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1. PDE pipe 

 

1.1. Background and rationale 

Subsea pipelines are essential for transporting oil and gas from 

offshore fields to onshore facilities or between platforms. 

Installing subsea pipelines is a complex and challenging process 

that requires careful planning, design, and execution. There are 

different methods for installing subsea pipelines, depending on 

the water depth, pipe diameter, seabed conditions and 

environmental factors. One of the most common methods is S-lay, 

where the pipe is welded and coated on board a vessel and then 

lowered to the seabed in an S-shaped curve.  

 
 

In this paper, I took approach as per thesis in [1]. I have used 

what the author called — a PDE pipe model in 6 degrees of freedom 

(DoF) per node, i.e. surge, sway, heave, roll, pitch, and yaw. 

 

1.2. Methodology 

 

1.2.1. Finite element model 

Finite element method (FEM) is a widely used method for 

numerically solving differential equations arising in engineering 

and mathematical modelling. The FEM is a general numerical method 

for solving partial differential equations in two or three space 



variables. To solve a problem, the FEM subdivides a large system 

into smaller, simpler parts that are called finite elements. This 

is achieved by a particular space discretization in the space 

dimensions, which is implemented by the construction of a mesh of 

the object: the numerical domain for the solution, which has a 

finite number of points. The finite element method formulation of 

a boundary value problem finally results in a system of algebraic 

equations. The method approximates the unknown function over the 

domain. The simple equations that model these finite elements are 

then assembled into a larger system of equations that models the 

entire problem. The FEM then approximates a solution by 

minimizing an associated error function via the calculus of 

variations (source Wikipedia). 

 

For this model, space frame element was used,[2]. 

 

1.2.2. Dynamics 

 

The linear and angular momentum balance equations for a 

nonlinear elastic beam are derived from Simo (1985). 

 

1.2.3. Numerical 

 

Odeint (solve_ivp) solver from scipy was used. 
 

 

1.3. Model and implementation 

The pipe at one end was fixed to sea floor and the other end was 

attached to center of gravity (CoG) of the vessel. 

 

Some steps of the modelling are described below: 

 

a) Catenary equation for an initial pipe profile  

b) Static solution on top of catenary 



 
 

c) Vessel motion was produced by Python Vessel 

Simulator,[3]:  

 

 
 

 

 



d) Created FEM model to calculate the force along the pipe. 

e) Dynamic model: 

 
 



f) Run the solver:  

 

 

1.4. Final words 

 

Static solution results: 

  
 

 
 

 

 

 

 

 

 

 

 



Dynamic solution results(profile):

 
 

 

The produced model needs validation on actual data (or other 

industry recognized software). It produces plausible results in a 

qualitative sense, but actual numbers are off. 

 

 

 

 

 

 

 

 

 

 

 

 



Some dynamic solution results (in time): 
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2. Pipeline laying profile optimization using 

genetic algorithms 

 

2.1 Background and rationale 
 

The upper curved part of the pipeline is known as the overbend. 

The pipeline will lose contacts with the stinger at a chosen 

angle and goes downward straightly and then gradually bends in 

the opposite direction known as the sagbend area (hence, the “S” 

curve). From the sagbend area, the suspended pipe continues to 

reach the seabed at the touchdown point. The detail of the S-lay 

configuration is shown below. In the sagbend area, the 

combination of bending and pressure loads must safely be 

sustained, [1]. 

 

 

 

The tension applied at the top is used to control the curvature 

in the sagbend region. Excessive bending, local buckling and 

collapse could happen if the tension in the top is lost due to 

sudden movements of the ship or any other reasons. The main 

function of the lay vessel is to provide tension to hold the 

suspended line pipes and to control its shape. The behavior of 

the long-suspended pipeline is more like a cable rather than a 

beam (so-called catenary curve), [1]. 



Usually, engineers try to minimize the top tension to reduce 

operational costs while preserving tensioners’ ability to hold 

the pipe during installation in rough seas. 

 

In this paper, I propose using genetic algorithm for the vessel 

laying profile design optimization for successfully conducting 

subsea pipeline installation procedure. Basically, it is a 

problem of continuous function optimization with some 

constraints, for which genetic algorithms are nicely suited. 

Formally, I aim to minimize top tension of tensioners with the 

constraints that sagbend tension is no greater than 60% of pipe’s 

Yield Strength (SMYS) and overbend tension is no greater that 90% 

of SMYS. The function to be minimized is that of analytical (in 

contrast to numerical, usually done by specialized software) 

static pipelay analysis with the following assumptions: the lift-

off point is assumed to occur at the second from the last roller 

at the bottom of the stinger. This is where the catenary curve is 

deemed to join. In fact, it is recognized that the true point of 

contra-flexion is beyond the end of the stinger; All current and 

wave forces on the pipeline and barge are ignored; Water 

absorption is taken as zero because of the short time that the 

pipe is immersed prior to touchdown; The end cap pressure can 

thus be taken as acting over the outer diameter of the concrete. 

For the optimization function derivation, one should contemplate 

simple considerations of the geometry of the barge, the pipe’s 

friction on the stinger and catenary equation, that can be found, 

for example, in [1], and is beyond the scope of this paper. 

Alternatively, more complex optimization function can be used 

including that of provided by commercial software for static and 

dynamic analysis of pipelay. In this article, however, I wanted 

to keep things simple. 

 

 

 



2.2. Methodology 

 

2.2.1. Catenary 

In physics and geometry, a catenary is the curve that an 

idealized hanging chain or cable assumes under its own weight 

when supported only at its ends in a uniform gravitational field. 

It has well established equation and was used to estimated 

tension in the pipeline.  

 

 

2.2.2. Genetic algorithms  

According to Wikipedia, in computer science and operations 

research, a genetic algorithm (GA) is a metaheuristic inspired by 

the process of natural selection that belongs to the larger class 

of evolutionary algorithms (EA). Genetic algorithms are commonly 

used to generate high-quality solutions to optimisation and 

search problems by relying on biologically inspired operators 

such as mutation, crossover and selection. In a genetic 

algorithm, a population of candidate solutions (called 

individuals, creatures, or phenotypes) to an optimisation problem 

is evolved toward better solutions. Each candidate solution has a 

set of properties (its chromosomes or genotype) which can be 

mutated and altered; traditionally, solutions are represented in 

binary as strings of 0s and 1s, but other encodings are also 

possible (with e.g., continuous variables like in this paper). 

The evolution usually starts from a population of randomly 

generated individuals, and is an iterative process, with the 

population in each iteration called a generation. In each 

generation, the fitness of every individual in the population is 

evaluated; the fitness is usually the value of the objective 



function in the optimisation problem being solved. The more fit 

individuals are stochastically selected from the current 

population, and each individual’s genome is modified (recombined 

and possibly randomly mutated) to form a new generation. The new 

generation of candidate solutions is then used in the next 

iteration of the algorithm. Commonly, the algorithm terminates 

when either a maximum number of generations has been produced, or 

a satisfactory fitness level has been reached for the population. 

A good introductory book for GAs, extensively used in this 

article, is [2]. It uses python as a primary programming language 

and DEAP framework for implementing genetic algorithms. DEAP is a 

novel evolutionary computation framework for rapid prototyping 

and testing of ideas. It seeks to make algorithms explicit and 

data structures transparent. It works in perfect harmony with 

parallelisation mechanism such as multiprocessing and SCOOP, [3]. 
 

2.2.3. Lay profile optimization 

GA was used to optimized pipeline lay profile for static 

analysis. 

 

 

2.3. Model and implementation  

The following steps describe the main parts of the program: 

 

 

 

 

 

 

 



a) Input data 

 
 

 
 

 
 

 
 

 

 

 

 

 



 
b) Start by setting the lower and upper boundary for each of 

the float values representing a Lay-barge data: 

 
c) Since our goal is to minimize the top tension of tensioners, 

we define a single objective, minimization fitness strategy: 

 
d) Now comes a particularly interesting part: since the 

solution is represented by a list of float values, each of a 

different range, we use the following loop to iterate over 

all pairs of lower-bound, upper-bound values. For each entry 

in Lay-barge data (table 4), we create a separate toolbox 

operator, which will be used to generate random float values 

in the appropriate range: 

 
e) Then, we create the parameter tuple, which contains the 

separate float number generators we just created for each 

parameter: 

 
 



 

f) Now, we can use this parameter tuple, in conjunction with 
DEAP’s built-in initCycle() operator, to create a new 

individualCreator operator that fills up an individual 

instance with a combination of randomly generated parameter 

values: 

 
 

g) Then, we instruct the genetic algorithm to use the 
pipelayStatic() method instance for fitness evaluation: 

 
 

Here, we use static_pipe_lay() as function for our “black-

box” static pipeline installation analysis. We also apply 

PENALTY_VALUE = 10 if our constraints are violated. 



h) Now, we need to define the genetic operators. While, for the 
selection operator, we use the usual tournament selection 

with a tournament size of 2, we choose crossover and 

mutation operators that are specialized for bounded float-

list chromosomes and provide them with the boundaries we 

defined for each parameter: 

 
i) In addition, we use the elitist approach, where the HOF 

(hall-of-fame) members — the current best individuals — are 

always passed untouched to the next generation: 

 
 

2.4. Final words 

By running the algorithm for 50 generations with a population 

size of 250, we get the following outcome: 

 



The progress during optimization can be seen below. It is 

depicting the min (in red) and average (in green) fitness over 

the generations, indicates that the best solution was approach in 

less than 5 generations and then only gradually decreased. 
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3. Robotic pipe 

 
3.1. Background and rationale 

In this article, I am trying to recreate the results of pipelay 

dynamics obtained in [1, 2] for robotic pipe. 

In [1] a model for the pipe is developed as part of a system 

joining a pipe and a vessel, that is suited for controller tasks 

while keeping the geometric configuration and the force balance 

of the pipeline. Instead of discretisation of catenary equations 

or finite element models which are disadvantageous due to their 

complexity, the standard robot model for a robot manipulator 

found in e.g. Spong and Vidyasagar [1989] or Sciavicco and 

Siciliano [2001] is utilised to model the pipeline. The vessel is 

included in the pipe model as the last link of the structure. A 

linked structure with many joints is termed hyper-redundant by 

Chirikjian and Burdick [1994]. Using a standard robot model 

formulation is advantageous since tools, developed for robot 

manipulators, for controller synthesis and stability analysis now 

can be applied directly. 
 

3.2. Methodology 

 

3.2.1. Pipe model and dynamics 

The pipeline is modelled as a series of connected links as 

illustrated below. It moves in six degrees of freedom (DOF), and 

hence each pipe element must support longitudinal stretching, 

lateral bending, and longitudinal rotation. Thus, each element 

has two rotational and a translational joint. In this paper and 

in [1] only planar motion of the pipeline in a vertical plane is 



considered. Hence the rotation is ignored, and the longitudinal 

bending is assumed to be small compared to the lateral bending, 

so it is also ignored. The model is based on the robot equation 

with minimal coordinates. 

 

 
 

The dynamics of the system is described by the second order 

ordinary differential equation (1): 

 
 

Vector of control inputs consists of the thruster forces and wave 

forces. Applied top tension is 14k ton-force for water depth of 

700m to make the illustration vivid. For more details for the 

mathematical model and constants used in this article please 

consult [1,2]. 

 

3.2.2. Numerical  

The modelling was conducted using SciPy package function odeint.  

 

 

 



3.3. Model and implementation  

The pipe at one end was fixed to sea floor and the other end was 

attached to center of gravity (CoG) of the vessel. 

 

The model consisted of 4 nodes and depicted in fig.3. Duration of 

simulation was 600 sec with dt=0.5 sec. 

 
a) For static solution, the robotic model dynamics (1) is 

reduced to 

 
where the configuration of the pipe is shaped only by the 

bending stiffness, gravity, and buoyancy (control forces 

from the stinger is not accounted in the model). 

 

b) After solving statics, the dynamical solution was obtained 
by applying the main function for the pipe ‘manipulator’ as 

presented below: 



 

 
 

 

3.4. Final words 

The following diagrams depict coordinates alternations and 

horizontal tension during pipelay dynamics simulation. 

 

 

 

 

  

 

 

 

 

 

 



The overall results are mainly along the lines of those obtained 

in [1,2], considering slight differences in model settings. The 

dynamics of the pipeline is harsh in terms of variation of the 

angle vector q accounting specific constants used during 

modelling to make PD controller application more pronounced. 
Although, we consider the outcomes of this paper as preliminary 

and requiring verification, the bulk framework is established and 

can be used in real projects. 
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