
Topology Optimization

This is a manual for topology optimization by

genetic algorithms and reinforcement learning

software developed in the years of 2018 to 2023.

Table of contents:

1. Genetic Approach

1.1. Bionic Partition

1.2. Bridge

2. Reinforcement Learning Approach

2.1. Bionic Partition

2.2. Bridge

2.3. Material Optimization

2.4. Spool

2.5. Alpha/MCTS

3. List of early preprints in 2018 and 2019

1.1. Generative design of bionic partition by

genetic algorithms and finite element analysis

1.1.1. Background and rationale

Modern research on aircraft design aim to reduce airplanes

components weight, optimize aircraft performance and contribute

to the challenge of reducing fuel consumption and operational

costs. From this perspective novel materials and technologies

are developed, but also advances in design methods and tools are

put forward. Generative design is one of the approaches to

automatically optimize component design. It uses evolutionary

algorithms and topological optimization to generate novel,

unconventional and complex structures like novel bionic

partition for Airbus A 320 cabin interiors,[1], considered in

this article.

1.1.2. Methodology

1.1.2.1. Finite element model

Finite element method (FEM) is a widely used method for

numerically solving differential equations arising in engineering

and mathematical modelling. The FEM is a general numerical method

for solving partial differential equations in two or three space

variables. To solve a problem, the FEM subdivides a large system

into smaller, simpler parts that are called finite elements. This

is achieved by a particular space discretization in the space

dimensions, which is implemented by the construction of a mesh of

the object: the numerical domain for the solution, which has a

finite number of points. The finite element method formulation of

a boundary value problem finally results in a system of algebraic

equations. The method approximates the unknown function over the

domain. The simple equations that model these finite elements are

then assembled into a larger system of equations that models the

entire problem. The FEM then approximates a solution by

minimizing an associated error function via the calculus of

variations (source Wikipedia).

For this model, space frame element was used,[2].

1.1.2.2. Genetic algorithms

According to Wikipedia, in computer science and operations

research, a genetic algorithm (GA) is a metaheuristic inspired by

the process of natural selection that belongs to the larger class

of evolutionary algorithms (EA). Genetic algorithms are commonly

used to generate high-quality solutions to optimization and

search problems by relying on biologically inspired operators

such as mutation, crossover, and selection. In a genetic

algorithm, a population of candidate solutions (called

individuals, creatures, or phenotypes) to an optimization problem

is evolved toward better solutions. Each candidate solution has a

set of properties (its chromosomes or genotype) which can be

mutated and altered; traditionally, solutions are represented in

binary as strings of 0s and 1s, but other encodings are also

possible (with e.g., continuous variables). The evolution usually

starts from a population of randomly generated individuals, and

is an iterative process, with the population in each iteration

called a generation. In each generation, the fitness of every

individual in the population is evaluated; the fitness is usually

the value of the objective function in the optimization problem

being solved. The more fit individuals are stochastically

selected from the current population, and everyone’s genome is

modified (recombined and possibly randomly mutated) to form a new

generation. The new generation of candidate solutions is then

used in the next iteration of the algorithm. Commonly, the

algorithm terminates when either a maximum number of generations

has been produced, or a satisfactory fitness level has been

reached for the population.

A good introductory book for GAs, extensively used in this

article, is [3]. It uses Python as a primary programming language

and DEAP framework for implementing genetic algorithms. DEAP is a

novel evolutionary computation framework for rapid prototyping

and testing of ideas. It seeks to make algorithms explicit and

data structures transparent. It works in perfect harmony with

parallelization mechanism such as multiprocessing and SCOOP, [4].

1.1.2.3. Combining FEM and GA

The main idea is to use genetic algorithms with fitness function

that of finite element analysis.

1.1.3. Model and implementation

Bionic partition for Airbus A 320 cabin interiors is well known

achievement of design by genetic algorithms, [5]. Here, I tried

to recreate the results at ‘schematic’ scale.

The objective was to minimise the weight of the structure (total

length of all elements) and maximise the strength (minimise

maximum out of plane displacement) for space frame structure.

Some steps of the modelling are described below:

a) Define a single objective, minimising fitness strategy:

b) Create the Individual class based on list:

c) Create an operator that randomly returns 0 or 1:

d) Create the individual operator to fill up an Individual

instance:

e) Create the population operator to generate a list of

individuals:

f) Then, we instruct the genetic algorithm to use the FEM

method instance for fitness evaluation:

g) Set genetic operators:

1.1.4. Final words

Results of the modelling is the produced design of ‘Bionic

partition’.

The progress during optimization can be seen below.

1.1.5. Bibliography

[1] Generative Design: Advanced Design Optimization Processes

for Aeronautical Application, S. Bagassi et al., ICAS 2016

[2] MATLAB Guide to Finite Elements. An Interactive Approach,

Peter I. Kattan, 2nd edition

[3] Hands-On Genetic Algorithms with Python: Applying genetic

algorithms to solve real-world deep learning and artificial

intelligence problems. Wirsansky, Eyal.

[4] https://deap.readthedocs.io/en/master/

[5] https://www.youtube.com/watch?v=IxF1FItQV4Y

1.2. Generative design of a bridge like

structure by genetic algorithms and finite

element analysis

1.2.1 Background and rationale
Two-dimensional bridge-like plane truss fixed at its leftmost and

rightmost bottom nodes was loaded in the middle node in downward

vertical direction. Optimization objective was to minimize the

middle node displacement.

1.2.2 Methodology

1.2.2.1 Finite element model
For this model, plane truss element was used,[1].

1.2.2.2 Combining FEM and GA
The main idea is to use genetic algorithms with fitness function

that of finite element analysis. GA implementation was from [2].

1.2.3 Model and implementation
The following steps describe the main parts of GA program:

a) We start by setting the lower and upper boundary for each of
the values representing some bridge intermediate nodes:

b) Since our goal is to minimize the middle node displacement,

we define a single objective, minimization fitness strategy

(because of negative displacement, it is maximization):

c) Now comes a particularly interesting part: since the
solution is represented by a list of float values, each of a

different range, we use the following loop to iterate over

all pairs of lower-bound, upper-bound values. For each entry

in data, we create a separate toolbox operator, which will

be used to generate random float values in the appropriate

range:

d) Then, we create the parameter tuple, which contains the

separate float number generators we just created for each

parameter:

e) Now, we can use this parameter tuple, in conjunction with

DEAP’s built-in initCycle() operator, to create a new

individualCreator operator that fills up an individual

instance with a combination of randomly generated parameter

values:

f) Then, we instruct the genetic algorithm to use the FEM
method instance for fitness evaluation:

g) Now, we need to define the genetic operators. While, for the
selection operator, we use the usual tournament selection

with a tournament size of 2, we choose crossover and

mutation operators that are specialized for bounded float-

list chromosomes and provide them with the boundaries we

defined for each parameter:

h) In addition, we use the elitist approach, where the HOF

(hall-of-fame) members — the current best individuals — are

always passed untouched to the next generation:

1.2.4 Final words
Results of the modelling is the optimized bridge design:

The progress during optimization can be seen below.

Which one can compare with an initial design that has bigger

middle node displacement of -0.005108382058368501.

1.2.5 Bibliography

[1] MATLAB Guide to Finite Elements. An Interactive Approach,

Peter I. Kattan, 2nd edition

[2] Hands-On Genetic Algorithms with Python: Applying genetic

algorithms to solve real-world deep learning and artificial

intelligence problems. Wirsansky, Eyal.

2.1. Generative design of bionic partition by

reinforcement learning and finite element

analysis

2.1.1 Background and rationale

Deep reinforcement learning has had great success in artificial

intelligence applications. Among them, beating the champion of

the game of Go in 2016, mastering many Atari games and

optimizing the work of data centers. In this article, I combine

deep reinforcement learning and finite element analysis for the

purpose of automating structural design of bionic partition for

Airbus A 320 cabin interiors,[1].

AI in general and deep reinforcement learning in particular are

powerful approaches in solving many nowadays problems in

information technology, business, healthcare, and engineering.

There is a myriad of applications for AI technologies that one

can implement to make life easier. Structural engineering design

is no exception. Designing a structure or a part of machinery is

a very tiring process. One needs to make a lot of manual changes

before resulting in the final design that satisfies structural

loads. But this iterative process can be automated.

A typical approach to structural engineering design is finite

element analysis. Several authors have tried to combine finite

element analysis and machine learning [2-4]. For example, [3]

have used deep-autoencoder to approximate the large deformations

on a non-linear, muscle actuated beam. In [4], machine learning

was used to predict the deformation of the breast tissues during

the compression. However, little attention has been paid to

using reinforcement leaning in assisting structural engineering

design. Most resent attempt to apply reinforcement learning to

topology optimization can be found in a work of Brown et al in

[5].

2.1.2 Methodology

2.1.2.1 Finite element model
For this model, space frame element was used,[6].

2.1.2.2 Reinforcement learning
Reinforcement learning (RL) can be understood by using the

concepts of agents, environments, states, observations, actions,

and rewards. A reinforcement learning agent interacts with its

environment in discrete time steps. At each time step, the agent

receives an observation, which typically includes the reward. It

then chooses an action from the set of available actions, which

is subsequently sent to the environment. The environment moves

to a new state and the reward associated with transition is

determined. The goal of a reinforcement learning agent is to

collect as much reward as possible. The advantage of

reinforcement learning is that one does not have to provide

labeled data for training, and its generalizability.

Reinforcement learning system learns by maximizing rewards with

no supervision.

2.1.2.3 FEM to RL agent interaction
The finite element model represents an environment to which a RL

agent applies actions and from which it gets observations and

rewards. The agent uses neural network to decide on its actions.

Actions change geometry of the structure or a component, and the

resulting geometry is then subjected to FEA. Finite element

analysis produces the state, which is then fed to neural network

and the process repeats itself. The agent gets rewards if it

meets the optimization objective of minimizing (weight) and/or

maximizing (stiffness) target values. The outcome of the

modeling is an optimized design of the component. The ‘inference

stage’ is a usual a ‘predict’ function for a neural network

where the RL agent makes greedy actions of altering the geometry

based on observations only.

2.1.3 Model and implementation
The following steps describe the main parts of RL-FEA program:

a) Define FE model, action space, rewards, observations, and

allowable moves of an agent.

b) Set up Gym (Python library) environment:

c) Set up Callback function to plot the training progress:

d) Train the model with PPO algorithm from Stable-Baselines3

(Python library)

2.1.4 Final words
One of the main advantages of using RL instead of conventional

optimization algorithms is its ability to generalize. I have

tested generalizability of the model by randomizing the agent’s

initial state (place in which it starts ‘drawing’ the geometry),

and setting completely new initial states during an inference

stage (the one that the agent has not seen during the training).

Also, I have included an action into state vector as doing so

showed some advantages in terms of final design’s

characteristics.

Results of the modelling is the produced design of ‘Bionic

partition’.

From the below graph it can be seen that the agent is

progressing and learning. Apparently, increasing the number of

learning steps should lead to better designs.

2.1.5 Bibliography

[1] https://www.youtube.com/watch?v=IxF1FItQV4Y

[2] Machine Learning and Finite Element Method for Physical

Systems Modeling. O.Kononenko, I.Kononenko, arXiv.org

[3] Towards Finite-Element Simulation Using Deep Learning.

Francois Roewer-Despres, Najeeb Khan, Ian Stavness, CMBBE 2018

[4] A finite element-based machine learning approach for

modeling the mechanical behavior of the breast tissues under

compression in real-time. Martinez-Martinez F, et al. ComputBiot

[5]https://www.sciencedirect.com/science/article/pii/S0264127522

002933

[6] MATLAB Guide to Finite Elements. An Interactive Approach,

Peter I. Kattan, 2nd edition

2.2. Generative design of bridge like structure

by reinforcement learning and finite element

analysis

2.2.1 Background and rationale
Two-dimensional bridge-like plane truss fixed at its leftmost and

rightmost bottom nodes was loaded in the middle node in downward

vertical direction. Optimization objective was to minimize the

middle node displacement.

2.2.2 Methodology
2.2.2.1 Finite element model
For this model, plane truss element was used,[1].

2.2.2.2 FEM to RL agent interaction
An RL agent was set to receive observations and rewards from the

environment (FEM).

2.2.3 Model and implementation

The following steps describe the main parts of RL-FEA program:

a) Define FE model, action space, rewards, observations, and

allowable moves of an agent.

b) Set up Gym (Python library) environment.

c) Set up Callback function to plot the training progress.

d) Train the model with PPO algorithm from Stable-Baselines3

(Python library)

2.2.4 Final words
I have included an action into state vector as doing so showed

some advantages in terms of the final design’s characteristics.

Also, I was randomizing nodes where the agent was doing

alternations during the training be better accommodate the

agent’s generalizability.

Results of the modelling is the produced design of bridge like

structure:

Which one can compare with an initial design that has bigger

middle node displacement of -0.005108382058368501, hence worser

stiffness.

From the below graph it can be seen the agent is progressing and

learning. Apparently, increasing the number of learning steps

should lead to better designs.

2.2.5 Bibliography
[1] MATLAB Guide to Finite Elements. An Interactive Approach,

Peter I. Kattan, 2nd edition

2.3. Material optimization by reinforcement

learning and finite element analysis

2.3.1 Background and rationale
This model tries to optimize stress-strain state (reduce

displacements to acceptable level) by combination of simple

finite element analysis (axially loaded bar element) and

reinforcement learning.

In essence, it is a simple form of material optimization where

an area and Young's modulus of bar element are being altered

during the training.

2.3.2 Methodology

2.3.2.1 Finite element model
For this model, an axially loaded bar element was used,[1].

2.3.2.2 FEM to RL agent interaction
An RL agent was set to receive observations and rewards from the

environment (FEM).

2.3.3 Model and implementation

The following steps describe the main parts of RL-FEA program:

a) Define FE model, action space, rewards, observations, and

allowable moves of an agent.

b) Set up Gym (Python library) environment.

c) Set up Callback function to plot the training progress.

d) Train the model with PPO algorithm from Stable-Baselines3

(Python library)

2.3.4 Final words

I have included an action into the state vector as doing so

showed some advantages in terms of the final design’s

characteristics.

Results of the modelling can be seen below:

From the graph it can be seen the agent is gradually progressing

and learning.

This model can be seen as simple form of material optimization

with RL.

2.3.5 Bibliography
[1] MATLAB Guide to Finite Elements. An Interactive Approach,

Peter I. Kattan, 2nd edition

2.4. Generative design of subsea spools by

reinforcement learning and finite element

analysis

2.4.1 Background and rationale
Spools are used to connect the subsea pipeline with a fixed

riser nearby the offshore platform.

In this model, two-dimensional spool-like plane frame was loaded

at its rightmost node in compressing horizontal direction,

leftmost node was completely fixed (see below). The environment

state (geometry and maximum nodal displacement) was fed to an

agent (neural network) which produced actions of altering

geometry of a subsea spool in a certain way. The optimization

objective was to minimize the maximum nodal displacement. After

training, inference was used to obtain optimal geometry of a

spool. The modeling has shown that the agent learned how to meet

the objective.

2.4.2 Methodology

2.4.2.1 Finite element model
For this model, plane frame element was used,[1].

2.4.2.2 FEM to RL agent interaction
An RL agent was set to receive observations and rewards from the

environment (FEM).

2.4.3 Model and implementation
The following steps describe the main parts of RL-FEA program:

a) Define FE model, action space, rewards, observations, and

allowable moves of an agent.

b) Set up Gym (Python library) environment.

c) Set up Callback function to plot the training progress.

d) Train the model with PPO algorithm from Stable-Baselines3

(Python library)

2.4.4 Final words
I have included an action into the state vector as doing so

showed some advantages in terms of final design’s

characteristics.

Also, I was randomizing nodes where the agent was doing

alternations during the training be better accommodate the

agent’s generalizability.

Results of the modelling is the produced design of spool like

structure:

Which one can compare with an initial design that has bigger

middle node (min, max) displacement of (-0.9257571525764527,

1.3885714431377043).

2.4.5 Bibliography
[1] MATLAB Guide to Finite Elements. An Interactive Approach,

Peter I. Kattan, 2nd edition

2.5. Generative design by AlphaZero/MCTS and

finite element analysis

Disclaimer: These models are now available only in older commits of my Gigala

GitHub repository (e.g., in 623d866f83943dc8193db15ac04afadba3b50f86)

2.5.1 Background and rationale
AlphaZero is a computer program developed by artificial

intelligence research company Google DeepMind to master the

games of chess, shogi and go. It uses RL, Monte Carlo tree

search (MCTS), and self-play to improve its policy, hence was a

good fit to test the task of generative design.

2.5.2 Methodology

2.5.2.1 Finite element model
For this model, space frame element was used,[1].

2.5.2.2 AlphaZero/MCTS algorithms

AlphaZero is a computer program developed by artificial

intelligence research company Google DeepMind to master the

games of chess, shogi and go. The algorithm uses an approach

like AlphaGo Zero. On December 5, 2017, the DeepMind team

released a preprint introducing AlphaZero, which within 24 hours

achieved a superhuman level of play in these three games by

defeating world-champion programs, Stockfish, elmo, and the 3-

day version of AlphaGo Zero, [2].

In computer science, Monte Carlo tree search (MCTS) is a

heuristic search algorithm for some kinds of decision processes,

most notably those employed in game play. MCTS has been used for

decades in computer Go programs. It has been used in other board

games like chess and shogi games with incomplete information

such as bridge and poker, as well as in real-time video games

(such as Total War: Rome II's implementation in the high-level

campaign AI), [3].

2.5.2.3 Finite Element to AlphaZero/MCTS
The finite element model represents an environment to which an

agent applies actions and from which it gets rewards. The agent

uses AlphaZero/MCTS algorithm to decide on its actions. Actions

change geometry of the structure of a bionic partition; the

resulting geometry is then subjected to FEA. The agent gets

rewards if it meets the optimization objective of minimizing

(weight) and maximizing (stiffness) target values. The outcome

of the modeling (produced ‘online’ during the ‘game’ after the

training of AlphaZero algorithm) is an optimized design of the

component.

2.5.3 Model and implementation
In this work, I made an agent do actions of drawing elements

between grid nodes. For 5x5 grid, there were 72 possible

elements (actions). I applied AlphaZero algorithm in a game

between two players. Rules of the game were as follows: whoever

drew a structure that passed through certain nodes

(checkpoints), produced connected structure, had at least two

neighbors for each node and an improved strength and weight

compared to the previous move, won. I decided to apply the

algorithm in a form of a game between two players because of the

ability to replace one player with a human engineer to assist an

RL agent in engineering design, and because I was interested in

how the agents would behave (when creating a structure) in

competitive game from the standpoint of the game theory. The

overall objective of the agents was to minimize the structure’s

weight while maximizing its strength. It took a while to train

AlphaZero algorithm for about 250 iterations.

I also tried to play a ‘two-boards’ game where instead of

building one structure on a single board by two RL agents, as

above, I made two separate RL agents compete in building two

separate structures on two separate boards. Hence, RL agents’

action did not block each other’s. The overall objective of the

agents was to minimize the structures’ weights while maximizing

their strengths. Whoever did it better - won. It took a while to

train AlphaZero algorithm for 150 iterations.

Finally, I applied MCTS in a game between two players with the

same rules. I decided to apply algorithm in a form of a game

between two players because of the ability to replace one player

with a human engineer to assist an agent in engineering design.

The overall objective of the agent was to minimize the

structure’s weight while maximizing its strength. It took a

while to complete the game if the number of playouts was big.

The bigger the number of playouts were, the more intelligent the

agent were.

2.5.4 Final words
AlphaZero player after appropriate training is much smarter than

pure MCTS player (it has much more wins than pure MCTS). Typical

game between AlphaZero and MCTS players takes on average more

steps than a random play. Results of the modeling (the game

between AlphaZero and MCTS players) show that agents are usually

capable of producing valid outcomes within 45 game steps (win

limit). Codebase for the model can be found at my Gigala GitHub

page (in old commits). I borrowed the code for the AlphaZero

algorithm from [4].

For ‘two-boards’ game, results of the modeling have shown that

RL agents, in the current formulation of the problem, are more

inclined to optimize for strength. However, the model might

produce different results with more training and hyperparameters

tuning and/or can be easily adjusted to optimize for weight.

For MCTS, results of the modeling show that an agent is usually

capable of producing valid outcomes within 40 game steps (I

incentivized the agent to do so by adjusting the parameter of

win limit) with 500 playouts. Sample results for the MCTS

algorithm can be seen below:

2.5.5 Bibliography
[1] MATLAB Guide to Finite Elements. An Interactive Approach,

Peter I. Kattan, 2nd edition

[2] https://en.wikipedia.org/wiki/AlphaZero

[3] https://en.wikipedia.org/wiki/Monte_Carlo_tree_search

[4] https://github.com/junxiaosong/AlphaZero_Gomoku

3. List of early preprints in 2018 and 2019

Engineering design of 1D rod and 2D pin-jointed frame structure driven by

reinforcement learning and finite element analysis, Dec 3, 2018,

https://github.com/gigatskhondia/gigala/blob/f224421695e7fed6ea0b38c15d08994e

354e6735/Description_for_models_1_and_2.pdf

On engineering design by finite element analysis and deep reinforcement

learning, Dec 4, 2018,

https://github.com/gigatskhondia/gigala/blob/9de315a34d192a8514f81d536184bf08

b1bd3e7d/manual.pdf

Generative design of bionic partition for airplane cabin interiors by

reinforcement learning and finite element analysis, May 13, 2019,

https://github.com/gigatskhondia/gigala/blob/53df2224ea34595b2bcf07045604319d

7926fbc7/manual_bionic_partition.pdf

Generative design of bionic partition for airplane cabin interiors by Monte

Carlo tree search and finite element analysis, May 28, 2019,

https://github.com/gigatskhondia/gigala/blob/90a6a75ba60ac4ff8bb3513237c504f7

46f9d8c3/manual_bionic_partition_MCTS.pdf

Generative design of bionic partition for airplane cabin interiors by

AlphaZero algorithm and finite element analysis, Jun 2, 2019,

https://github.com/gigatskhondia/gigala/blob/b97b4f0af52998d992a77f8680f1f9a6

8b958187/manuals/manual_bionic_partition_AlphaZero.pdf

