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1.1. Generative design of bionic partition by 

genetic algorithms and finite element analysis 

 

1.1.1. Background and rationale 

Modern research on aircraft design aim to reduce airplanes 

components weight, optimize aircraft performance and contribute 

to the challenge of reducing fuel consumption and operational 

costs. From this perspective novel materials and technologies 

are developed, but also advances in design methods and tools are 

put forward. Generative design is one of the approaches to 

automatically optimize component design. It uses evolutionary 

algorithms and topological optimization to generate novel, 

unconventional and complex structures like novel bionic 

partition for Airbus A 320 cabin interiors,[1], considered in 

this article. 

 

1.1.2. Methodology 

 

1.1.2.1. Finite element model 

Finite element method (FEM) is a widely used method for 

numerically solving differential equations arising in engineering 

and mathematical modelling. The FEM is a general numerical method 

for solving partial differential equations in two or three space 

variables. To solve a problem, the FEM subdivides a large system 

into smaller, simpler parts that are called finite elements. This 

is achieved by a particular space discretization in the space 

dimensions, which is implemented by the construction of a mesh of 

the object: the numerical domain for the solution, which has a 

finite number of points. The finite element method formulation of 

a boundary value problem finally results in a system of algebraic 

equations. The method approximates the unknown function over the 

domain. The simple equations that model these finite elements are 



then assembled into a larger system of equations that models the 

entire problem. The FEM then approximates a solution by 

minimizing an associated error function via the calculus of 

variations (source Wikipedia). 

 

For this model, space frame element was used,[2]. 

 

1.1.2.2. Genetic algorithms 

According to Wikipedia, in computer science and operations 

research, a genetic algorithm (GA) is a metaheuristic inspired by 

the process of natural selection that belongs to the larger class 

of evolutionary algorithms (EA). Genetic algorithms are commonly 

used to generate high-quality solutions to optimization and 

search problems by relying on biologically inspired operators 

such as mutation, crossover, and selection. In a genetic 

algorithm, a population of candidate solutions (called 

individuals, creatures, or phenotypes) to an optimization problem 

is evolved toward better solutions. Each candidate solution has a 

set of properties (its chromosomes or genotype) which can be 

mutated and altered; traditionally, solutions are represented in 

binary as strings of 0s and 1s, but other encodings are also 

possible (with e.g., continuous variables). The evolution usually 

starts from a population of randomly generated individuals, and 

is an iterative process, with the population in each iteration 

called a generation. In each generation, the fitness of every 

individual in the population is evaluated; the fitness is usually 

the value of the objective function in the optimization problem 

being solved. The more fit individuals are stochastically 

selected from the current population, and everyone’s genome is 

modified (recombined and possibly randomly mutated) to form a new 

generation. The new generation of candidate solutions is then 

used in the next iteration of the algorithm. Commonly, the 

algorithm terminates when either a maximum number of generations 

has been produced, or a satisfactory fitness level has been 

reached for the population. 



 

A good introductory book for GAs, extensively used in this 

article, is [3]. It uses Python as a primary programming language 

and DEAP framework for implementing genetic algorithms. DEAP is a 

novel evolutionary computation framework for rapid prototyping 

and testing of ideas. It seeks to make algorithms explicit and 

data structures transparent. It works in perfect harmony with 

parallelization mechanism such as multiprocessing and SCOOP, [4]. 

 

1.1.2.3. Combining FEM and GA  

The main idea is to use genetic algorithms with fitness function 

that of finite element analysis. 

 

1.1.3. Model and implementation  

Bionic partition for Airbus A 320 cabin interiors is well known 

achievement of design by genetic algorithms, [5]. Here, I tried 

to recreate the results at ‘schematic’ scale. 

 

The objective was to minimise the weight of the structure (total 

length of all elements) and maximise the strength ( minimise 

maximum out of plane displacement) for space frame structure. 

 

Some steps of the modelling are described below: 

 

a) Define a single objective, minimising fitness strategy: 

 
b) Create the Individual class based on list: 

 
c) Create an operator that randomly returns 0 or 1: 

 
d) Create the individual operator to fill up an Individual 

instance: 



 
e) Create the population operator to generate a list of 

individuals: 

 
f) Then, we instruct the genetic algorithm to use the FEM 

method instance for fitness evaluation: 

 
g) Set genetic operators: 

 

 

 

1.1.4. Final words 

Results of the modelling is the produced design of ‘Bionic 

partition’. 

 



 
 

The progress during optimization can be seen below. 
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1.2. Generative design of a bridge like 

structure by genetic algorithms and finite 

element analysis 

 

1.2.1 Background and rationale 
Two-dimensional bridge-like plane truss fixed at its leftmost and 

rightmost bottom nodes was loaded in the middle node in downward 

vertical direction. Optimization objective was to minimize the 

middle node displacement. 

 

1.2.2 Methodology 
 

1.2.2.1 Finite element model 
For this model, plane truss element was used,[1]. 

 

1.2.2.2 Combining FEM and GA  
The main idea is to use genetic algorithms with fitness function 

that of finite element analysis. GA implementation was from [2].  

 

1.2.3 Model and implementation  
The following steps describe the main parts of GA program: 

 

a) We start by setting the lower and upper boundary for each of 
the values representing some bridge intermediate nodes: 

 
b) Since our goal is to minimize the middle node displacement, 

we define a single objective, minimization fitness strategy 

(because of negative displacement, it is maximization): 

 



c) Now comes a particularly interesting part: since the 
solution is represented by a list of float values, each of a 

different range, we use the following loop to iterate over 

all pairs of lower-bound, upper-bound values. For each entry 

in data, we create a separate toolbox operator, which will 

be used to generate random float values in the appropriate 

range: 

 
d) Then, we create the parameter tuple, which contains the 

separate float number generators we just created for each 

parameter: 

 
e) Now, we can use this parameter tuple, in conjunction with 

DEAP’s built-in initCycle() operator, to create a new 

individualCreator operator that fills up an individual 

instance with a combination of randomly generated parameter 

values: 

 
 

 

 

 

 

 

 

 

 



f) Then, we instruct the genetic algorithm to use the FEM 
method instance for fitness evaluation: 

 
 

g) Now, we need to define the genetic operators. While, for the 
selection operator, we use the usual tournament selection 

with a tournament size of 2, we choose crossover and 

mutation operators that are specialized for bounded float-

list chromosomes and provide them with the boundaries we 

defined for each parameter: 

 



h) In addition, we use the elitist approach, where the HOF 

(hall-of-fame) members — the current best individuals — are 

always passed untouched to the next generation: 

 
 

1.2.4 Final words 
Results of the modelling is the optimized bridge design: 

 
The progress during optimization can be seen below. 

 
 



Which one can compare with an initial design that has bigger  

middle node displacement of -0.005108382058368501. 
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2.1. Generative design of bionic partition by 

reinforcement learning and finite element 

analysis 

 

2.1.1 Background and rationale 
 

Deep reinforcement learning has had great success in artificial 

intelligence applications. Among them, beating the champion of 

the game of Go in 2016, mastering many Atari games and 

optimizing the work of data centers. In this article, I combine 

deep reinforcement learning and finite element analysis for the 

purpose of automating structural design of bionic partition for 

Airbus A 320 cabin interiors,[1]. 

 

AI in general and deep reinforcement learning in particular are 

powerful approaches in solving many nowadays problems in 

information technology, business, healthcare, and engineering. 

There is a myriad of applications for AI technologies that one 

can implement to make life easier. Structural engineering design 

is no exception. Designing a structure or a part of machinery is 

a very tiring process. One needs to make a lot of manual changes 

before resulting in the final design that satisfies structural 

loads. But this iterative process can be automated. 

 

A typical approach to structural engineering design is finite 

element analysis. Several authors have tried to combine finite 

element analysis and machine learning [2-4]. For example, [3] 

have used deep-autoencoder to approximate the large deformations 

on a non-linear, muscle actuated beam. In [4], machine learning 

was used to predict the deformation of the breast tissues during 

the compression. However, little attention has been paid to 

using reinforcement leaning in assisting structural engineering 

design. Most resent attempt to apply reinforcement learning to 



topology optimization can be found in a work of Brown et al in 

[5]. 

 

2.1.2 Methodology 
 

2.1.2.1 Finite element model 
For this model, space frame element was used,[6]. 

 

2.1.2.2 Reinforcement learning 
Reinforcement learning (RL) can be understood by using the 

concepts of agents, environments, states, observations, actions, 

and rewards. A reinforcement learning agent interacts with its 

environment in discrete time steps. At each time step, the agent 

receives an observation, which typically includes the reward. It 

then chooses an action from the set of available actions, which 

is subsequently sent to the environment. The environment moves 

to a new state and the reward associated with transition is 

determined. The goal of a reinforcement learning agent is to 

collect as much reward as possible. The advantage of 

reinforcement learning is that one does not have to provide 

labeled data for training, and its generalizability. 

Reinforcement learning system learns by maximizing rewards with 

no supervision.  

 

2.1.2.3 FEM to RL agent interaction 
The finite element model represents an environment to which a RL 

agent applies actions and from which it gets observations and 

rewards. The agent uses neural network to decide on its actions. 

Actions change geometry of the structure or a component, and the 

resulting geometry is then subjected to FEA. Finite element 

analysis produces the state, which is then fed to neural network 

and the process repeats itself. The agent gets rewards if it 

meets the optimization objective of minimizing (weight) and/or 



maximizing (stiffness) target values. The outcome of the 

modeling is an optimized design of the component. The ‘inference 

stage’ is a usual a ‘predict’ function for a neural network 

where the RL agent makes greedy actions of altering the geometry 

based on observations only. 

 

2.1.3 Model and implementation  
The following steps describe the main parts of RL-FEA program: 

a) Define FE model, action space, rewards, observations, and 

allowable moves of an agent. 

b) Set up Gym (Python library) environment:  



 
 

c) Set up Callback function to plot the training progress:  



 
 

d) Train the model with PPO algorithm from Stable-Baselines3 

(Python library)

 

 

2.1.4 Final words 
One of the main advantages of using RL instead of conventional 

optimization algorithms is its ability to generalize. I have 

tested generalizability of the model by randomizing the agent’s 

initial state (place in which it starts ‘drawing’ the geometry), 

and setting completely new initial states during an inference 

stage (the one that the agent has not seen during the training). 

 

Also, I have included an action into state vector as doing so 

showed some advantages in terms of final design’s 

characteristics.  



 

Results of the modelling is the produced design of ‘Bionic 

partition’. 

 

 

 

 

From the below graph it can be seen that the agent is 

progressing and learning. Apparently, increasing the number of 

learning steps should lead to better designs. 
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2.2. Generative design of bridge like structure 

by reinforcement learning and finite element 

analysis 

 

2.2.1 Background and rationale 
Two-dimensional bridge-like plane truss fixed at its leftmost and 

rightmost bottom nodes was loaded in the middle node in downward 

vertical direction. Optimization objective was to minimize the 

middle node displacement. 

 

2.2.2 Methodology 
2.2.2.1 Finite element model 
For this model, plane truss element was used,[1]. 

 

2.2.2.2 FEM to RL agent interaction 
An RL agent was set to receive observations and rewards from the 

environment (FEM). 

 

2.2.3 Model and implementation  
 

The following steps describe the main parts of RL-FEA program: 

a) Define FE model, action space, rewards, observations, and 

allowable moves of an agent. 

b) Set up Gym (Python library) environment. 

c) Set up Callback function to plot the training progress.  

d) Train the model with PPO algorithm from Stable-Baselines3 

(Python library)

 
 

 



2.2.4 Final words 
I have included an action into state vector as doing so showed 

some advantages in terms of the final design’s characteristics. 

 

Also, I was randomizing nodes where the agent was doing 

alternations during the training be better accommodate the 

agent’s generalizability. 

 

Results of the modelling is the produced design of bridge like 

structure:  

 

 
 

Which one can compare with an initial design that has bigger  

middle node displacement of -0.005108382058368501, hence worser 

stiffness. 

 

 
 



From the below graph it can be seen the agent is progressing and 

learning. Apparently, increasing the number of learning steps 

should lead to better designs. 
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2.3. Material optimization by reinforcement 

learning and finite element analysis 

 

2.3.1 Background and rationale 
This model tries to optimize stress-strain state (reduce 

displacements to acceptable level) by combination of simple 

finite element analysis (axially loaded bar element) and 

reinforcement learning. 

 

In essence, it is a simple form of material optimization where 

an area and Young's modulus of bar element are being altered 

during the training.  

 

2.3.2 Methodology 
 

2.3.2.1 Finite element model 
For this model, an axially loaded bar element was used,[1]. 

 

2.3.2.2 FEM to RL agent interaction 
An RL agent was set to receive observations and rewards from the 

environment (FEM). 

 

2.3.3 Model and implementation  
 

The following steps describe the main parts of RL-FEA program: 

 

a) Define FE model, action space, rewards, observations, and 

allowable moves of an agent. 

 

 

b) Set up Gym (Python library) environment. 



 
c) Set up Callback function to plot the training progress.  

d) Train the model with PPO algorithm from Stable-Baselines3 

(Python library)

 

 

 

2.3.4 Final words 
 

I have included an action into the state vector as doing so 

showed some advantages in terms of the final design’s 

characteristics. 

 

 

 



Results of the modelling can be seen below:  

 

 

 

From the graph it can be seen the agent is gradually progressing 

and learning. 

 

 

This model can be seen as simple form of material optimization 

with RL.  

 

2.3.5 Bibliography 
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2.4. Generative design of subsea spools by 

reinforcement learning and finite element 

analysis 

 

2.4.1 Background and rationale 
Spools are used to connect the subsea pipeline with a fixed 

riser nearby the offshore platform. 

 

 

 

 

In this model, two-dimensional spool-like plane frame was loaded 

at its rightmost node in compressing horizontal direction, 

leftmost node was completely fixed (see below). The environment 

state (geometry and maximum nodal displacement) was fed to an 

agent (neural network) which produced actions of altering 

geometry of a subsea spool in a certain way. The optimization 

objective was to minimize the maximum nodal displacement. After 

training, inference was used to obtain optimal geometry of a 

spool. The modeling has shown that the agent learned how to meet 



the objective.

 

 

2.4.2 Methodology 
 

2.4.2.1 Finite element model 
For this model, plane frame element was used,[1]. 

 

2.4.2.2 FEM to RL agent interaction 
An RL agent was set to receive observations and rewards from the 

environment (FEM). 

 

2.4.3 Model and implementation 
The following steps describe the main parts of RL-FEA program: 

 

a) Define FE model, action space, rewards, observations, and 

allowable moves of an agent. 

b) Set up Gym (Python library) environment. 

c) Set up Callback function to plot the training progress.  

d) Train the model with PPO algorithm from Stable-Baselines3 

(Python library)

 
 

 



2.4.4 Final words 
I have included an action into the state vector as doing so 

showed some advantages in terms of final design’s 

characteristics. 

 

Also, I was randomizing nodes where the agent was doing 

alternations during the training be better accommodate the 

agent’s generalizability. 

 

Results of the modelling is the produced design of spool like 

structure:  

 
 

Which one can compare with an initial design that has bigger  

middle node (min, max) displacement of (-0.9257571525764527, 

1.3885714431377043). 
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2.5. Generative design by AlphaZero/MCTS and 

finite element analysis 

 
Disclaimer: These models are now available only in older commits of my Gigala 

GitHub repository (e.g., in 623d866f83943dc8193db15ac04afadba3b50f86) 

 

2.5.1 Background and rationale 
AlphaZero is a computer program developed by artificial 

intelligence research company Google DeepMind to master the 

games of chess, shogi and go. It uses RL, Monte Carlo tree 

search (MCTS), and self-play to improve its policy, hence was a 

good fit to test the task of generative design. 

 

2.5.2 Methodology 
 

2.5.2.1 Finite element model 
For this model, space frame element was used,[1]. 

 

2.5.2.2 AlphaZero/MCTS algorithms 
 

AlphaZero is a computer program developed by artificial 

intelligence research company Google DeepMind to master the 

games of chess, shogi and go. The algorithm uses an approach 

like AlphaGo Zero. On December 5, 2017, the DeepMind team 

released a preprint introducing AlphaZero, which within 24 hours 

achieved a superhuman level of play in these three games by 

defeating world-champion programs, Stockfish, elmo, and the 3-

day version of AlphaGo Zero, [2]. 

 

In computer science, Monte Carlo tree search (MCTS) is a 

heuristic search algorithm for some kinds of decision processes, 



most notably those employed in game play. MCTS has been used for 

decades in computer Go programs. It has been used in other board 

games like chess and shogi games with incomplete information 

such as bridge and poker, as well as in real-time video games 

(such as Total War: Rome II's implementation in the high-level 

campaign AI), [3]. 

 

2.5.2.3 Finite Element to AlphaZero/MCTS  
The finite element model represents an environment to which an 

agent applies actions and from which it gets rewards. The agent 

uses AlphaZero/MCTS algorithm to decide on its actions. Actions 

change geometry of the structure of a bionic partition; the 

resulting geometry is then subjected to FEA. The agent gets 

rewards if it meets the optimization objective of minimizing 

(weight) and maximizing (stiffness) target values. The outcome 

of the modeling (produced ‘online’ during the ‘game’ after the 

training of AlphaZero algorithm) is an optimized design of the 

component. 

 

2.5.3 Model and implementation 
In this work, I made an agent do actions of drawing elements 

between grid nodes. For 5x5 grid, there were 72 possible 

elements (actions). I applied AlphaZero algorithm in a game 

between two players. Rules of the game were as follows: whoever 

drew a structure that passed through certain nodes 

(checkpoints), produced connected structure, had at least two 

neighbors for each node and an improved strength and weight 

compared to the previous move, won. I decided to apply the 

algorithm in a form of a game between two players because of the 

ability to replace one player with a human engineer to assist an 

RL agent in engineering design, and because I was interested in 

how the agents would behave (when creating a structure) in 

competitive game from the standpoint of the game theory. The 

overall objective of the agents was to minimize the structure’s 



weight while maximizing its strength. It took a while to train 

AlphaZero algorithm for about 250 iterations. 

 

 

I also tried to play a ‘two-boards’ game where instead of 

building one structure on a single board by two RL agents, as 

above, I made two separate RL agents compete in building two 

separate structures on two separate boards. Hence, RL agents’ 

action did not block each other’s. The overall objective of the 

agents was to minimize the structures’ weights while maximizing 

their strengths. Whoever did it better - won. It took a while to 

train AlphaZero algorithm for 150 iterations. 

 

Finally, I applied MCTS in a game between two players with the 

same rules. I decided to apply algorithm in a form of a game 

between two players because of the ability to replace one player 

with a human engineer to assist an agent in engineering design. 

The overall objective of the agent was to minimize the 

structure’s weight while maximizing its strength. It took a 

while to complete the game if the number of playouts was big. 

The bigger the number of playouts were, the more intelligent the 

agent were. 

 

2.5.4 Final words 
AlphaZero player after appropriate training is much smarter than 

pure MCTS player (it has much more wins than pure MCTS). Typical 

game between AlphaZero and MCTS players takes on average more 

steps than a random play. Results of the modeling (the game 

between AlphaZero and MCTS players) show that agents are usually 

capable of producing valid outcomes within 45 game steps (win 

limit). Codebase for the model can be found at my Gigala GitHub 

page (in old commits). I borrowed the code for the AlphaZero 

algorithm from [4]. 

 



For ‘two-boards’ game, results of the modeling have shown that 

RL agents, in the current formulation of the problem, are more 

inclined to optimize for strength. However, the model might 

produce different results with more training and hyperparameters 

tuning and/or can be easily adjusted to optimize for weight.  

 

For MCTS, results of the modeling show that an agent is usually 

capable of producing valid outcomes within 40 game steps (I 

incentivized the agent to do so by adjusting the parameter of 

win limit) with 500 playouts. Sample results for the MCTS 

algorithm can be seen below: 
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